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The purpose of appropriateness/person-fit indices
is to identify response patterns for which a given item
response theory model is inappropriate for an exami-
nee even though that model is appropriate for a group.
This study was concerned with those cases in which
examinees had prior knowledge of items from an
item bank used to generate a computerized adaptive
test (CAT) and used the memorized information to
inflate their test scores. The objective was to evaluate
procedures that could identify these individuals by

examining the application of person-fit indices in the
CAT environment. Thelz andECI4z indices were
selected for comparison. Using information from
these indices, a new method was developed. All
three indices showed little power to detect the use
of memorization. Some possibilities for altering
a test when the model becomes inappropriate for
an examinee are also discussed.Index terms:
aberrancy detection, appropriateness measurement,
item memorization, item response theory, person fit.

Appropriateness/person-fit indices based on item response theory (IRT) are designed to detect
response patterns that indicate that a givenIRT model is inappropriate for an examinee even though
the model might be appropriate for a group of examinees. The model may be inappropriate for a
person for a number of reasons. First, examinees might answer items at random, not using their
underlying abilities because of a “warm-up” effect (Wang & Wingersky, 1992). Second, examinees
might skip an item on a paper-and-pencil test without skipping the corresponding item on the answer
sheet or vice-versa. TheIRT model assumes that the examinees answered the remaining items based
on their underlying abilities. Therefore, these examinees will have spuriously low ability estimates
(Levine & Rubin, 1979). A spuriously low score may also be produced when examinees turn easy
items into difficult items. These examinees create difficulty in the items that was not in the test
design and thus answer incorrectly (Hoffman, 1978). Finally, anIRT model is inappropriate for
examinees who copy some (but not all) of the answers from a neighbor’s test. In this situation,
the ability being measured is not the examinee’s but a combination of the neighbor’s ability, the
accuracy of the examinee’s copying, and the examinee’s ability. The score attained might then be
spuriously high. In the case of test preview or memorization of some of the test items, the model
is also inappropriate and may result in inflated test scores.

In computerized adaptive testing (CAT), the issue of memorizing items is a major concern. If the
item bank is small and does not include many difficult items, the examinee with prior knowledge
of some of the more difficult items might have an advantage. Due to the adaptive nature ofCAT,
memorizing those items most frequently exposed overall would not inflate scores as much as
memorizing the more difficult items. BecauseCAT uses an examinee’s performance on test items
to select the next item, knowing answers to the more difficult items should help an examinee route
into more memorized difficult items. Answering the more difficult items correctly will seriously
inflate test scores. This class of deviations from the assumptions of theIRT model, which arises
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from a lack of security of some items, might be able to be detected by person-fit indices (PFIs). If
memorization is perfect, then the examinee’s responses are all correct and noPFI will determine
that the score has been obtained by memorization. However, in most situations, examinees will not
have perfect success in memorization, and an index might be useful for gauging a test’s security.

For example, a high ability examinee might take aCAT exam and memorize specific items. Later,
these items might be shared with future examinees who use this information to route into similar
memorized items. If successful, these examinees will inflate their test scores. These individuals
include those with access to some of the more difficult items or those items most frequently exposed
to the top scorers. This study was designed to evaluate severalPFIs for detecting examinees who
used memorized information to inflate their test scores.

IRT-Based PFIs

ManyIRT-basedPFIs have been developed, e.g.,lo (Levine & Rubin, 1979),lz (Drasgow, Levine,
& Williams, 1985), andECI1z, ECI2z, ECI4z, andECI6z (Tatsuoka, 1984; see Meijer, 1996, for a
review). Because prior research suggested thatlz andECI4z were the most useful of these indices,
they were used in this study.

Thelz index. lz is a standardized function of the maximum of the likelihood function (lo), and
is defined as
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where
i indexes the item (i = 1, . . . , n),
θ is the continuous latent trait,
u is a response to an item in the test (1 = correct, 0 = incorrect),
P(θ̂) is the probability of a correct item response for a givenθ based on the model, and
θ̂ is the maximum likelihood estimate ofθ .

Large negative values oflz indicate misfit or unlikely response patterns. Large positive values
indicate overfit. For this study, the negative oflz (−lz) was used to simplify comparison with other
indices, i.e., negative values became positive and vice-versa.
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If the examinee responds according to theIRT model, lz has a sampling distribution that is
asymptotically normal with a mean of 0 and standard deviation (SD) of 1. In this case, the standard-
ization allows examination of person fit for examinees tested on different items and with different
θ estimates. It lessens the degree to which person fit will be confounded withθ (Drasgow et al.,
1985). If the examinee does not respond according to theIRT model,lz might not have a similar
distribution.

There is justifiable concern about the use oflz. Some research has shown thatlz is most efficient
at detecting non-model-fitting response patterns when the test has items of varied difficulty and
small lower asymptote parameters (Reise & Due, 1991). However, Drasgow & Levine (1986) noted
thatlz performed satisfactorily with detection rates approximately 65% of the optimal for response
patterns that indicate cheating behavior. Nering (1996) foundlz superior toECI4z, especially when
item responses were misfitting within the first five items administered.

The ECI4z index. ECI4z detects response patterns when item responses do not agree with the
modeled probability of answering them correctly. This index is based on the relationship between
modeled performance and observed performance given the items’ difficulties. This statistic is
calculated as

ECI4z =
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whereP(θ̂) is defined as the examinee’s meanP(θ̂) for the set of items administered.
ECI4z, like lz, is standardized with a mean of 0 andSD of 1 under the null hypothesis. Unlikely

misfitting patterns causeECI4z to become large. Large positive values may result from prior knowl-
edge of some difficult items without knowledge of easier items. Conversely, large negative values
may result from an examinee correctly answering more easy items and fewer difficult items than
would be expected on the basis of theIRT model.

A New PFI

This index,Zc, was designed to detect response patterns that may result when an examinee
has memorized some of the items. It is an extension ofECI4z. Zc separates test items into three
categories: easy, medium, and difficult. These categories are based on threshold/difficulty (b)
estimates. The highest one-third of theb values were classified as difficult items; the lowest third
of the bs were the easy items, and the middle third were medium difficulty items. The residual
performance is computed for each item as the difference between the probability of correctly
answering the item and the scored (1-0) response:
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where
Easy[P(θ̂) − u] is the mean residual for the easy items administered,

Difficult [P(θ̂) − u] is the mean residual for the difficult items administered, and
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nEasyandnDifficult are, respectively, the number of easy and difficult items administered.

Zc is thus a function of the average of the residuals for the easy items minus the average of the
residuals for the difficult items. IfZc is positive, then the examinee did not answer easy items
correctly but answered difficult items correctly, indicating a misfit with the underlying model.

One drawback of theCAT environment when using this index is the need for two ranges of items.
If an examinee does not receive at least one easy item and one difficult item, the index cannot be
calculated. For a better estimate, several items from each category are necessary. There are several
possible solutions to this problem. One solution is to design aCAT to administer at least one item
from each category. A second solution is to classify all the items in the bank as easy or difficult,
eliminating the middle category. A third solution is to design aCAT algorithm that administers at
least one easy item to each examinee. This would allow computation ofZc for those examinees
who have a greater chance of inflating their test scores, namely those receiving many difficult items.
Administering at least one difficult item to every examinee might not be necessary because there is
little threat of score inflation if an examinee receives only easy items. Therefore, not being able to
computeZc in these “received no difficult items” cases may not be a concern, and a value ofZc =
0 could be assigned.

Analytical Comparisons of the Indices

Because these indices were derived using slightly different philosophies, they reflect misfit using
different weighting systems. Previous studies have found a large negative correlation betweenlz and
ECI4z (e.g., Birenbaum, 1985; Harnisch & Tatsuoka, 1983). The differences may be investigated
using the structure of their numerators (the denominators are only for standardization). When the
numerator of−lz in Equation 1 is written as
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it closely resembles the numerator inECI4z (Equation 5). ForECI4z, the second term in the numerator
sum weights each item’s residual performance by its relative difficulty compared to the average
item difficulty, P(θ̂), for all items administered to an examinee. This index adjusts for the overall
difficulty in the items administered; the sum of these residuals is 0. More weight is given to residuals
for items that are farther from the average difficulty. Weights for each item set are linearly related
to P(θ̂). In the−lz computation, the second term in the numerator is the weight for each item’s
residual performance. This weight is a constant function—the logit of the probability of a correct
response—and is not dependent on the set of items administered. It does not have the restriction
that the weights sum to 0. Therefore, the weights for−lz may all be the same sign. Overall, both
indices are influenced bŷθ . A graphical display of the standardized weights for an easy item set
and a more difficult item set using−lz andECI4z is shown in Figure 1.

Zc does not weight the residuals in terms of the probability of a correct response. This index uses
the relative difficulty as compared with all other items in the bank to assign the relative weights.
Therefore, unlike−lz andECI4z, the relative weights are not a function of the probability of a correct
response and are only indirectly influenced byθ̂ .

Method

Data Simulation

Two simulations were based on an operational Graduate Record Examination Quantitative (GRE-
Q) CAT bank. In the first simulation, the 50 most frequently exposed items (in a bank of 348)
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Figure 1
Standardized Weights for ECI4z and−lz Computed for Two Item Sets

for the upper 5% of the scorers were assumed to be memorized. Item parameters from the 3-
parameter logisticIRT model (3PLM) for these items are listed in Table 1. Although these items
were administered to the high scorers, they were not the most difficult items. Two of the memorized
items hadb values below the averageb (−.02) and the medianb (.11) for theCAT bank used. The
averageb for the memorized items was 1.26, the average discrimination (a) was 1.27, and the
average lower asymptote (c) was .13. For the entire bank, the averagea was .91 and the average
c was .13. When a simulee was administered one of the 50 memorized items, a correct response
was automatically given in theCAT simulation. The simulees were generated to be successful at
memorization to produce a worst case for test security and, therefore, a good case for comparing
these indices. The3PLM with operational item parameter estimates was used to generate a response
when one of the 298 remaining items was administered. In the second simulation, the null case,
none of the items was assumed to be memorized. Therefore, theIRT model was used to generate
all item responses.

Each simulation generated 1,650 response patterns using the operationalGRE-Q CAT algorithm
(Stocking & Swanson, 1993). Theθs used were from a discrete uniform distribution containing
150 simulees at 11θ values selected to correspond to the operational test’s score range. Table 2
shows the relationship between estimated number-correct (ENC) values,θs, and population weights.
ENCs refer to a reference test that was used for score reporting. The population weights represent
an estimated distribution of theθs for an operational administration of the test and were used in
some analyses to permit comparisons more representative of an operational distribution.

Twenty-eight items from a bank of 348 were administered to each simulee. For each simulee,
the three indices were calculated based on the responses to the first 10 items administered and the
responses to all 28 items.

Calculation of Zc

For theZc calculations, the bank of 348GRE-Q items was divided into three categories by the
value ofb. The one-third with the highestbs were classified as difficult items. The lowest one-third,
those with the smallestbs, were designated as the easy items.

In the 10-item calculation,Zc was not computed for 365 of the simulees in the memorized
simulation: 95 did not receive at least one easy item and 270 did not receive at least one difficult
item. In the 28-item calculation, the number of examinees for whomZc was not computed decreased
to 317 (60 and 257, respectively). For the null case simulation (without memorization), the number
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Table 1
IRT Item Parameters for Memorized Items

Item a b c Item a b c

1 1.630 −.908 .139 26 1.840 1.259 .326
2 1.027 −.456 .070 27 1.158 1.265 .057
3 .910 .485 .341 28 1.457 1.266 .280
4 1.729 .791 .242 29 1.285 1.291 .081
5 1.578 .851 .134 30 1.065 1.299 .065
6 .433 .855 0.000 31 1.037 1.357 .082
7 1.777 .871 .150 32 1.235 1.374 .097
8 1.011 .902 .031 33 1.248 1.424 .124
9 1.274 .978 .203 34 1.413 1.442 .125

10 1.276 1.019 .204 35 1.199 1.446 .071
11 1.298 1.033 .055 36 1.469 1.452 .230
12 1.144 1.072 .123 37 .895 1.481 .112
13 .754 1.083 .039 38 1.125 1.490 .044
14 1.357 1.094 .201 39 .753 1.496 .047
15 1.508 1.112 .182 40 1.233 1.636 .162
16 1.199 1.172 .293 41 1.007 1.666 .130
17 .701 1.182 .170 42 .799 1.776 .094
18 1.840 1.194 .169 43 1.119 1.817 .092
19 1.096 1.201 .161 44 1.579 1.820 .147
20 1.528 1.204 .086 45 1.777 1.830 .094
21 1.766 1.209 .256 46 .726 1.878 .061
22 1.306 1.211 .169 47 1.130 1.971 .044
23 1.489 1.233 .052 48 1.409 2.073 .065
24 1.408 1.238 .165 49 1.567 2.091 .112
25 1.627 1.245 .123 50 1.169 2.182 .157

of cases for whichZc could not be computed increased. In the 10-item calculation,Zc was not
computed for 565 simulees (80 did not receive an easy item and 485 did not receive a difficult item)
out of 1,650. This number decreased to 481 (54 and 427, respectively) in the 28-item calculation.
A Zc value of 0 was assigned for those simulees for whichZc could not be computed.

Table 2
ENC,θ , and

Corresponding
Population Weights

ENC θ Weight

10 −3.8394 .001442
15 −2.1841 .029116
20 −1.3811 .100307
25 −.8118 .158306
30 −.3482 .171876
35 .0534 .154741
40 .4271 .125484
45 .8074 .106487
50 1.2419 .094023
55 1.8824 .054866
59 3.5462 .003353



L. D. McLEOD and C. LEWIS
DETECTING ITEM MEMORIZATION IN CAT 153

Problems inθθθ Estimation

Initial results showed that after 10 items, 1,015 of the 1,319 simulees in the Memorized group had
attained perfect scores andθ̂ = ∞. Because of this problem, there is noPFI that will distinguish
those simulees receiving perfect scores based onθ from those that received perfect scores by
memorization. Therefore, the 10-item calculation was not investigated further.

For the 28-item computation, there were 260 simulees withθ̂ = ∞ in the Memorized group
and 73 in the Null group. A value of 0 was assigned for these simulees for all three indices to
signify perfect or null fit. Reise (1995) used a similar rule for investigatinglz. For those simulees
with θ̂ = −∞, P (θ̂) was set to the value of the lower asymptote for each item unless the lower
asymptote was 0. In the latter case,P(θ̂ = −6) was used. This rule was applied for 44 simulees,
all from the Null group. Eight of these had answered all items incorrectly.

Results

Memorization Success Rates

Evidence of two categories of memorization was found in the first simulation: 1,319 simulees
that received 16 or more memorized items and 326 that received 4 or fewer. Five simulees received
between 5 and 15 memorized items. 41% (679) of the 1,650 simulees received a memorized item
as the first item. Of the simulees that received a memorized item as their first item, 96% were
given a memorized item for Item 2; over 50% of these 679 simulees were administered memorized
items for each of the first 10 items. Thus, even with the exposure control methods used in the
CAT item selection algorithm, these examinees received many of the memorized items. If the
memorized items had been selected randomly from the bank, this pattern would have been very
unlikely. However, these memorized items were those most frequently exposed to the highest 5%
of examinees and were, therefore, some of the more difficult items.

Only those simulees that received 16 or more memorized items were included in the Memorized
group for the comparison studies. This group is the larger sample of memorizers and contains
those simulees that received many items. Also, only 80 of these were assigned a value of 0 forZc

because it could not be computed. Table 3 shows average test score inflation for the Memorized
and Null groups. The Memorized group’s average test score using the population weights given
in Table 2 was 58.4. Approximately 43% of those simulees with a lowENC of 10 received 16 or
more memorized items. These simulees averaged 57.8 (out of 60 possible points) for their final
test score by using memorized information. These examinees should be detected byPFIs.

Detection Rates

Cutoff values forPFIs, e.g., 1.65 for a nominal one-tailedα = .05 error rate, have been suggested
based on a normal distribution (Reise & Due, 1991). Several cut values were investigated here.
Cut 1 was the empirical one-tailedα = .05 error rate cut point. Cut 2 was 1.65. Cut 3 was
2.58, corresponding to nominalα < .005. Cut 4 was a more conservative cutoff value of 3.3,
corresponding to nominalα < .0005; this value reflects concerns for the seriousness of a Type
1 error in the context of the intended application. Several characteristics of the−lz, ECI4z, and
Zc indices became apparent, as shown in Figure 2, which compares the indices for the Null and
Memorized groups.

Except for those simulees at the highestENCs, the Memorized group had a mean−lz value
(Figure 2a) that was consistently higher than expected under the null hypothesis, as shown by a
positive value that indicated misfit due to prior knowledge. The−lz index maintained a difference
in the mean value between the Memorized and Null groups for simulees at lowerENCs. However,
the average−lz value for the simulees with many items memorized remained well below any of
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Table 3
Mean and SD of Test Score Inflation
(Estimated Minus True Test Score)

Null Memorized
ENC Mean SD n Mean SD n

10 −.5 1.4 150 47.8 .6 64
15 .2 2.0 150 42.8 .7 80
20 −.1 2.9 150 37.9 .8 90
25 .2 3.1 150 33.0 .7 110
30 .0 3.3 150 28.0 .8 121
35 .2 3.1 150 23.0 .7 120
40 −.4 3.6 150 18.2 .8 135
45 .3 2.9 150 13.4 .8 149
50 −.1 2.0 150 8.6 .9 150
55 .0 1.4 150 4.2 .8 150
59 .3 .8 150 .9 .4 150

the cut points. Also, at the higherENCs, the Null mean approached the Memorized mean; a very
low percentage of the memorizers would be detected under these circumstances.

Figure 2b shows that results forECI4z were similar to those of−lz. For the Null group, the average
values forECI4z approached the Memorized group at higherENCs. When the Memorized group
answered all 28 items, theirENC estimates were so inflated and their memorization so successful
that ECI4z did not detect them well. For example, 131 of the 150 Memorizers atENC = 59 had
response patterns of all 1s andθ̂ = ∞. These were assigned a value of 0 for the three indices.
Many of the Memorizers successfully inflated their scores and were much more difficult to detect
using these indices at higherENCs. They behaved much like the higherθ simulees in the Null
group.

Figure 2c shows the results forZc. The mean for the Memorized group did not exceed any of
the cut points. The group means for those simulees with many memorized items and no memorized
items maintained some distance across the lower and middleENCcategories. At higherENCs, mean
Zc for the Memorized group was essentially the same as for the Null group.

Table 4 compares the proportion detected, maximum, minimum, average, andSDs for the three
indices. Population weights from Table 2 were used to compute these values.Zc showed the largest
difference between the Memorized and Null groups. Each index had success in not detecting many
simulees from the Null group. TheSDs were approximately .2, except forZc’s largerSD when
computed for the Memorized group. None of the indices appeared to be well-standardized for
the Null case, with means less than 0 andSDs less than 1. These findings support those of Reise
(1995). He found thatlz’s null distribution had a reduced variance whenθ was estimated. For the
empirical cut point (Cut 1),ECI4z detected more of the Memorized group (15.9%) than the other
indices. However,Zc out-performed the other two indices at all of the other cut points.

Zc had the most extreme values, with a maximum value of 11.47 associated with a case in which
the simulee received 26 memorized items out of the 28 items administered. This simulee had an
ENC of 25 and an estimated test score of 58.9. The simulee answered 27 of the 28 items correctly.
The ECI4z value for this simulee was 1.17; the−lz value was 1.27. Overall, none of the indices
showed great power at detecting the use of memorization.

Correlation Analysis

Correlations among−lz, ECI4z, and Zc (Table 5) confirmed that the three indices behaved
differently from each other in theCAT environment.Zc’s low correlations with−lz andECI4z were
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Figure 2
Person-Fit Index Value by ENC for 28 Items for Memorized and Null Groups

a. Average−lz

b. Average ECI4z

c. AverageZc
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Table 4
Proportion of Simulees Identified as Misfitting Using Four Cut Points, and

Descriptive Statistics for−lz, ECI4z, andZc in the Null and Memorized Groups

−lz ECI4z Zc

Value Null Memorized Null Memorized Null Memorized

Cut 1 .050 .087 .050 .159 .050 .091
Cut 2 .014 .019 .017 .054 .013 .084
Cut 3 .002 0.000 .002 0.000 .001 .084
Cut 4 .0011 0.0000 .0014 0.0000 .0001 .0830
Max 4.10 2.55 4.18 2.40 6.12 11.47
Min −2.77 −.46 −2.88 −1.57 −1.92 −.62
Mean −.30 .34 −.31 .36 −.22 .54
SD .2 .2 .3 .2 .2 .5

consistent with the fact that it gathered information about misfit using a different weighting system.
The correlation between−lz andECI4z (.967) was high for the Null group as shown by the upper
triangle in Table 5. The correlation was relatively high for the Memorized group (.703), but not as
high as reported in previous studies (e.g., Birenbaum, 1985; Harnisch & Tatsuoka, 1983).

Table 5
Weighted Correlations Among the
Three Indices for the Null Group
(N = 1,650; Upper Triangle) and

the Memorized Group (N = 1,319;
Lower Triangle)

Index −lz ECI4z Zc

−lz — .967 .524
ECI4z .703 — .483

Zc .560 .315 —

Frequency Distributions

Figure 3 shows the empirical relative frequency distributions for the three indices. To obtain
these distributions, the discrete uniformθ distribution was weighted by population weights to
depict a sample more representative of an operationalθ distribution. For each index, the relative
proportion at each index value is plotted for the Memorized and Null groups. For an index to show
good discrimination there should be relatively little or no overlap between the Memorized and Null
groups.

In Figure 3a, the distributions for−lz almost completely overlap. The Memorized group shows
a slight positive shift, but most of its area is near 0. In Figure 3b, theECI4z shows more variability
for the Memorized group, but still considerable overlap in the tails between the two distributions.
Less of the area of the distribution for the Memorized group is above 0 when compared to−lz’s
distributions.Zc (Figure 3c) was slightly better, with a shorter positive tail for the Null group and
more area in the positive tail for the Memorized group. For all three distributions, much of the
area was near or at 0 for the Memorized group. None of the distributions were well standardized
for the Null group. Some of the area at 0 represents the simulees that attained response patterns of
all 1s and were assigned a value of 0.Zc had more area at 0 for those that did not receive at least
one easy/difficult item and were assigned a value of 0 forZc. Zc had more area at the 3.5 or above
value than for any other index. The values in this area ranged from 3.5 to 11.47 and were relatively
evenly spread.
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Figure 3
Distribution of Person-Fit Indices for Memorized and Null Groups for 28 Items

a. −lz

b. ECI4z

c. Zc
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ROC Curves

Marginal probabilityROC curves (Green & Swets, 1966) offer an additional evaluation ofPFIs
as discussed by Hulin, Drasgow, & Parsons (1983). The points on anROCcurve represent the ratio
of false alarms to hits. EmpiricalROC curves were calculated for−lz, ECI4z, andZc. For each
point on theROC curve, the value on the horizontal axis is the proportion of those from the Null
group “detected” by an index using a particular cutoff value (false-alarm rate) and the value on the
vertical axis is the detected proportion in the Memorized group (hit rate). These proportions were
weighted using the population weights given in Table 2.

Figure 4a contains theROC curve for 28 items. This figure shows that approximately 90% of
simulees in the Memorized group were detected when the false-alarm rate was 42% using−lz.
The hit rates for the other two indices at this false-alarm rate were approximately 75% forECI4z
and 65% forZc. At a 16% false-alarm rate,Zc had slightly more power to detect, with a hit rate
of 40%. At this point,−lz had the least power of the three indices. (An index operating only by
chance would produce a curve on the diagonal.)

Figure 4b shows the lower left-hand corner of Figure 4a. This graph has been magnified to
show theROCcurves for false-alarm rates up to 10%. These are more representative of rates useful
for operational decision making. For example, in Figure 4b, for a 3% false-alarm rate, over 8% of
all simulees in the Memorized group were detected usingZc, whereas−lz detected 4% andECI4z
detected 10%.Zc had more power to detect when the false-alarm rate was less than 2.5% andECI4z
had more power between 2.5% and 10% false-alarm rates.

Discussion

In agreement with Nering (1997), it was found that−lz andECI4z were not distributed as expected
within the context ofCAT. Because of the item selection algorithm implemented inCAT, these results
also support those of Reise & Due (1991) who found it very problematic to detect misfitting response
patterns for tests with limited ranges of item difficulty. Although the results are specific to the test
and item bank selected, the distributions of the indices in this study were nonnormal and, overall,
showed little power to detect memorizers inCAT.

As the technology for detecting memorizers improves, the question of what to do when an
examinee is suspected of memorizing becomes important. The first priority should be to salvage
the test administration. One strategy is to continue testing in theCAT environment using highly
secure items with known characteristics. These may be items that have been calibrated in a selected
and secure field test sample. Items in this category will have very low exposure rates and will be
very expensive to produce.

Another, less expensive, strategy is to administer a few easy items that the examinee will probably
answer correctly. For example, if theCAT administration has estimated the examinee’sθ at 1.6, the
CAT may give a “suspect” of prior knowledge a few items at the−1.0 θ range. If the examinee is
truly knowledgeable, he or she should consistently answer these items correctly. If the examinee
has attained his or her score merely through prior item knowledge or memorization, some of these
items may prove difficult. For this strategy to work, however, the memorizer must not have a
genuinely highθ level. If the memorizer does, the easy items given would be answered correctly.
It is assumed that highθ memorizers have little to gain by memorizing and thus are not those most
likely to do so. After an analysis of the examinee, theCAT could continue to be administered if the
responses indicated that the examinee was responding consistently.

A more expensive strategy is to stop theCAT mode of testing and continue testing using a secure
linear form. This test can be administered by computer so the examinee is unaware of the change.
Possible disadvantages of this strategy are increased test time and a less accurateθ estimate.
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Figure 4
ROC Curves forZc, ECI4z, and−lz for 28 Items

a. False-Alarm Rate 0.0 to 1.0

b. False-Alarm Rate 0.0. to .10

Future Research

With the use of on-line calibration in theCAT environment, the next step may be to consider
item fit. In addition to detecting examinees as misfitting, items may also be detected as misfitting.
Items that have been memorized, for example, will no longer fit theIRT model and will perform
aberrantly. Once detected, an item may be replaced to maintain test security.

Along with the use of aPFI to monitor the use of examinee memorization to attain higher scores
comes the need for differential analyses of these indices. Do they give different results depending
on gender or ethnic classification? Are certain misfitting patterns due to cultural differences? If
these differences are present, how may they be used to improve testing and thus make testing more
fair?
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