In the previous chapter we saw how one-way ANOVA could be characterized in terms of a multiple regression equation that used dummy variables to code group membership. In addition, in Chapter 8 we saw how multiple regression could incorporate several continuous predictor variables. It should, therefore, be no surprise that the regression equation for ANOVA can be extended to include one or more continuous variables that predict the outcome (or dependent variable). Continuous variables such as these, that are not part of the main experimental manipulation but have an influence on the dependent variable, are known as covariates and they can be included in an ANOVA analysis. When we measure covariates and include them in an analysis of variance we call it analysis of covariance (or ANCOVA for short). This chapter focuses on this technique.

In the previous chapter, we used an example about looking at the effects of Viagra on libido. Let's think about things other than Viagra that might influence libido: well, the obvious one is the libido of the participant's sexual partner (after all 'it takes two to tango'!), but there are other things too such as other medication that suppresses libido (such as antidepressants or the contraceptive pill) and fatigue. If these variables (the covariates) are measured, then it is possible to control for the influence they have on the dependent variable by including them in the regression model. From what we know of hierarchical regression (see Chapter 8) it should be clear that if we enter the covariate into the regression model first, and then enter the dummy variables representing the experimental manipulation, we can see what effect an independent variable has after the effect of the covariate. As such, we partial out the effect of the covariate. Here are two reasons for including covariates in ANOVA:

To reduce within-group error variance: In the discussion of ANOVA and t-tests we got used to the idea that we assess the effect of an experiment by comparing the amount of variability in the data that the experiment can explain against the variability that it cannot explain. If we can explain some of this 'unexplained' variance (SSR) in terms of other variables (covariates), then we reduce the error variance, allowing us to assess more accurately the effect of the independent variable (SSM).

Elimination of confounds: In any experiment, there may be unmeasured variables that confound the results (i.e., variables other than the experimental manipulation that affect the outcome variable). If any variables are known to influence the dependent variable being measured, then ANCOVA is ideally suited to remove the bias of these variables. Once a possible confounding variable has been identified, it can be measured and entered into the analysis as a covariate.

There are other reasons for including covariates in ANOVA, but because I do not intend to describe the computation of ANCOVA in any detail I recommend that the interested reader consult my favourite sources on the topic (Stevens, 2002; Wildt & Ahtola, 1978).